人工神经网络模型在肾移植患者他克莫司个体化给药中的应用

傅晓华,洪晓丹,刘石带,叶毅芳,容颖慈,陈小陆,任斌*

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 1000-1004.

PDF(922 KB)
PDF(922 KB)
中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 1000-1004. DOI: 10.11669/cpj.2013.12.014
论著

人工神经网络模型在肾移植患者他克莫司个体化给药中的应用

  • 傅晓华1,洪晓丹2,刘石带2,叶毅芳2,容颖慈2,陈小陆2,任斌2*
作者信息 +

Applicaton of Artificial Neural Network in Predicting Tacrolimus Concentrations in Kidney Transplantation Recipients

  • FU Xiao-hua1, HONG Xiao-dan2, LIU Shi-dai2, YE Yi-fang 2, RONG Ying-ci2, CHEN Xiao-lu2, REN Bin2*
Author information +
文章历史 +

摘要

目的建立人工神经网络用于估算肾移植受者他克莫司血药浓度。方法收集55例肾移植受者口服他克莫司的322份稳态全血浓度数据,采用遗传算法配合动量法优化网络参数,建立人工神经网络。结果人工神经网络平均预测误差(MPE)与平均绝对误差(MAE)分别为(0.13±1.91)和(1.49±1.22)ng·mL-1,87.9%血药浓度数据绝对预测误差≤3.0ng·mL-1。人工神经网络准确性及精密度优于多元线性回归。结论人工神经网络预测的相关性、准确性和精密度较好,简便迅捷,可用于预测肾移植受者他克莫司血药浓度。

Abstract

OBJECTIVE To establish an artificial neural network (ANN) for predicting tacrolimus concentrations in kidney transplantation recipients. METHODS Three hundred and twenty-two tacrolimus concentration data from 55 Chinese kidney transplantation recipients were collected. ANN was established after the network parameters were optimized by using momentum method combined with genetic algorithm. Furthermore, the performance of ANN was compared with that of multiple linear regression (MLR). RESULTS When using the accumulated dose of tacrolimus in the 6 d before TDM as the input factor, the mean prediction error and mean absolute prediction error of ANN were (0.13?1.91) and (1.49?1.22) ng穖L-1, respectively. The absolute prediction errors for 87.9% of the test data set were less than 3.0 ng穖L-1. The accuracy and precision of ANN were superior to those of MLR. CONCLUSION The correlation, accuracy and precision of ANN are good enough to predict tacrolimus concentration.

关键词

他克莫司 / 肾移植 / 人工神经网络 / 个体化给药

Key words

tacrolimus / kidney transplantation / artificial neural network / individualization of dosage regimen

引用本文

导出引用
傅晓华,洪晓丹,刘石带,叶毅芳,容颖慈,陈小陆,任斌*. 人工神经网络模型在肾移植患者他克莫司个体化给药中的应用[J]. 中国药学杂志, 2013, 48(11): 1000-1004 https://doi.org/10.11669/cpj.2013.12.014
FU Xiao-hua, HONG Xiao-dan, LIU Shi-dai, YE Yi-fang , RONG Ying-ci, CHEN Xiao-lu, REN Bin*. Applicaton of Artificial Neural Network in Predicting Tacrolimus Concentrations in Kidney Transplantation Recipients[J]. Chinese Pharmaceutical Journal, 2013, 48(11): 1000-1004 https://doi.org/10.11669/cpj.2013.12.014
中图分类号: R969.1   

参考文献

[1] WALLEMACQ P E, REDING R. FK506 (tacrolimus), a novel immunosuppressant in organ transplantation: Clinical, biomedical, and analytical aspects . Clin Chem, 1993, 39(11 Pt 1): 2219-2228.

[2] VINCENTI F, JENSIK S C, FILO R S, et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: Evidence for improved allograft survival at five years . Transplantation, 2002, 73(5): 775-782.

[3] LERUT J, MATHYS J, VERBAANDERT C, et al. Tacrolimus monotherapy in liver transplantation: One-year results of a prospective, randomized, double-blind, placebo-controlled study . Ann Surg, 2008, 248(6): 956-967.

[4] PIRSCH J D, MILLER J, DEIERHOI M H, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group . Transplantation, 1997, 63(7): 977-983.

[5] JENSIK S C. Tacrolimus (FK 506) in kidney transplantation: Three-year survival results of the US multicenter, randomized, comparative trial. FK 506 Kidney Transplant Study Group . Transplant Proc, 1998, 30(4): 1216-1218.

[6] VINCENTI F. Tacrolimus (FK 506) in kidney transplantation: Five-year survival results of the U.S. multicenter, randomized, comparative trial . Transplant Proc, 2001, 33(1-2): 1019-1020.

[7] XIA D Y, LIU L, GUO T, et al. Pharmacokinetics of tacrolimus in renal transplant recipients . Chin Pharm J (中国药学杂志), 2004, 39(10): 62-64.

[8] JAIN A, BRODY D, HAMAD I, et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus . Transplantation, 2000, 69(1): 172-176.

[9] GU J, ZHANG C Y, LI Y Z. Advance in therapeutic drug monitoring of tacrolimus. Chin Pharm J(中国药学杂志), 2007, 42(01): 6-9.

[10]STAATZ C E, WILLIS C, TAYLOR P J, et al. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients . Clin Pharmacol Ther, 2002, 72(6): 660-669.

ANTIGNAC M, BARROU B, FARINOTTI R, et al. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients . Br J Clin Pharmacol, 2007, 64(6): 750-757.

ZHAO W, ELIE V, ROUSSEY G, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients . Clin Pharmacol Ther, 2009, 86(6): 609-618.

BENKALI K, PREMAUD A, PICARD N, et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients . Clin Pharmacokinet, 2009, 48(12): 805-816.

VELICKOVIC-RADOVANOVIC R, CATIC-DJORDJEVIC A, MILOVANOVIC J R, et al. Population pharmacokinetics of tacrolimus in kidney transplant patients . Int J Clin Pharmacol Ther, 2010, 48(6): 375-382.

BENKALI K, ROSTAING L, PREMAUD A, et al. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation . Clin Pharmacokinet, 2010, 49(10): 683-692.

ZHANG G M, LI L, CHEN W Q, et al. Population pharmacokinetics of tacrolimus in Chinese renal transplant patients . Acta Pharm Sin (药学学报), 2008, 43(07): 695-701.

CHEN X Q, ZHOU L, SU Y, et al. Neural network and its applications in pharmacokinetics and pharmacodynamics . J Southwest Univ Nats (Nat Sci Ed) (西南民族学院学报:自然科学版), 2001, 27(01): 84-87.

REN B, HE Q Y, XU Q, et al. Prediction of mycophenolic acid exposure in renal transplantation recipients by artificial neural network . Acta Pharm Sin (药学学报), 2009, 44(12): 1397-1401.

GOREN S, KARAHOCA A, ONAT F Y, et al. Prediction of cyclosporine A blood levels: An application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy . Eur J Clin Pharmacol, 2008, 64(8): 807-814.

LI C P, ZHI X N, LIU X H, et al. Combining the best subset method with the Akike Information Criterion to build Logistic Regression in predictiving peripheral neuropathy in Type 2 Diabetes Mellitus . Chin J Health Stat (中国卫生统计), 2010, 127(06): 594-597.

SHEINER L B, BEAL S L. Some suggestions for measuring predictive performance . J Pharmacokinet Biopharm, 1981, 9(4): 503-512.

XU F, ZHAI S D, HU Y F. Molecular mechanism for drug-drug interaction related to tacrolimus . Chin Pharm J(中国药学杂志), 2007, 42(13): 965-968.
PDF(922 KB)

93

Accesses

0

Citation

Detail

段落导航
相关文章

/